

Dati di input dei sistemi FRCM di

per il rinforzo della muratura con

Premessa

Per dimensionare il rinforzo di un Maschio Murario con il sistema FRCM di **FASSABORTOLO** secondo il CNR-DT215 è necessario conoscere i parametri geometrici e meccanici che caratterizzano la tecnologia e sapere dove inserirli nel software **Verifiche Rinforzi**.

Questo documento è una guida utile a tal fine.

I sistemi FRCM di FASSABORTOLO per il rinforzo di un maschio murario

I Compositi Fibrorinforzati a Matrice Inorganica, più comunemente detti **FRCM**, costituiscono un sistema di rinforzo esterno (placcaggio) a basso spessore (circa 5 – 15 mm al netto del livellamento del supporto) formato da una rete realizzata con fibre – come acciaio ad alta resistenza, carbonio, vetro, arammide, basalto – e una matrice inorganica (malta) a base di cemento o calce. Il risultato è quindi una "malta rinforzata" che viene applicata all'elemento strutturale conferendo ad esso un incremento di resistenza a trazione, efficace per sopperire a carenze in termini di capacità di resistenza sia a taglio-trazione sia a pressoflessione. Nei casi in cui sia richiesta l'adozione di connessioni, il sistema si completa con connettori preformati o a fiocco per il collegamento all'elemento strutturale da rinforzare.

La semplicità e velocità di installazione, la leggerezza dei materiali e la bassa invasività attribuiscono un'elevata versatilità di interventi al sistema, come ad esempio:

- Rinforzo a taglio e a pressoflessione di maschi murari;
- Rinforzo di archi, volte in muratura, tamponamenti e partizioni in laterizio;
- Cerchiatura esterna di strutture murarie.

Per i sistemi FRCM vige l'obbligo del Certificato di Valutazione Tecnica (CVT) o della Marcatura CE sulla base della pertinente "Valutazione Tecnica Europea" (ETA), documento in cui si trovano certificati alcuni dei parametri necessari a descrivere il sistema ai sensi del cap.11.1 delle NTC 2018.

Tutti i sistemi FRCM di FASSABORTOLO sono in possesso di Certificato di Valutazione Tecnica (n. 344 del 19-09-2024).

Figura 1 - Sistema FRCM di Fassa Bortolo con rete

Figura 2 - Sistema FRCM di Fassa Bortolo con tessuto

Verifiche Rinforzi, applicativo AMV per la progettazione di interventi di rinforzo negli edifici esistenti

Verifiche Rinforzi e Muratura Armata è il software di AMV con cui si dimensionano varie tipologie di intervento su edifici esistenti in c.a. o in muratura. L'applicativo può essere utilizzato sia stand alone sia **integrato in MasterSap 4U**.

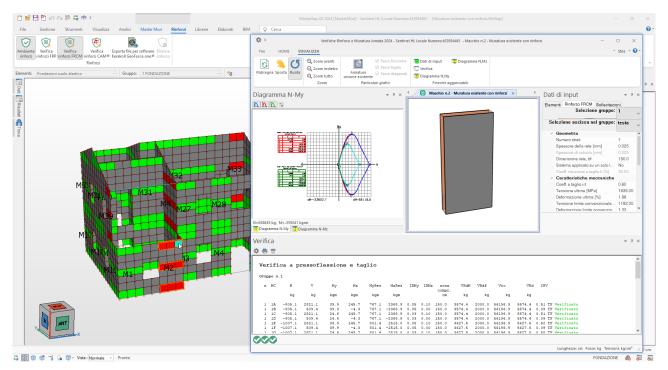


Figura 3 - Procedura interattiva in MasterSap 4U (MasterMuri) per il rinforzo di un maschio murario con FRCM.

In Verifiche Rinforzi si adottano le indicazioni e i principi di verifica contenuti nel **CNR-DT 215/2018** in cui vengono quindi definiti e illustrati anche i parametri meccanici e geometrici finalizzati alla descrizione del sistema FRCM come rinforzo di un maschio murario.

L'utente, per poter dimensionare un sistema di rinforzo di tipo FRCM applicato a un maschio murario esistente, deve conoscere quali sono i dati necessari e sapere dove vanno inseriti entro l'applicativo. Nella Figura 4 vediamo la scheda di interfaccia dedicata all'input del Rinforzo FRCM. Illustriamo qui di seguito i dati seguendo l'ordine proposto nella scheda.

VERSIONE GRATUITA DEL SOFTWARE AMV

AMV offre una collana software per l'ingegneria che consente di modellare, calcolare, dimensionare, disegnare strutture nuove o esistenti. Il software è disponibile nella versione gratuita con alcune restrizioni, che sicuramente non ne impediscono un'approfondita disamina.

Per SCARICARE GRATIS la versione dimostrativa MasterSap Freeware accedere al link della pagina web dedicata https://www.amv.it/informazioni/demo/richiesta-freeware

MasterSap Freeware è <u>allineato con la versione in distribuzione</u>, di cui segue gli aggiornamenti periodici con novità di prodotto e miglioramenti. Quindi sempre aggiornata in particolare alle Norme Tecniche vigenti e relativa Circolare.

Utile per esplorare le potenzialità del programma in autonomia dalla modellazione alle verifiche e disegno, rispetto alla versione in distribuzione MasterSap Freeware contiene alcune limitazioni di utilizzo.

Sperimenta il calcolo del rinforzo FRCM di FASSABORTOLO con MasterSap 4U freeware

La versione freeware di MasterSap 4U <u>contiene anche la procedura Verifiche Rinforzi e Muratura</u> <u>Armata integrata</u> per il calcolo degli interventi di rinforzo strutturale su edifici esistenti in muratura o c.a.

AMV fornisce **supporto gratuito**, per approfondire aspetti di carattere sia tecnico che commerciale, ai professionisti che stanno valutando **MasterSap 4U** attraverso la versione Freeware.

Telefono +39 0481 779903

E-mail freeware@amv.it

Dati di input dei sistemi FRCM di FASSABORTOLO in Verifiche Rinforzi

RINFORZO DI UN MASCHIO MURARIO

Come detto, il progettista per dimensionare il sistema FRCM applicato a un maschio murario esistente deve dare in input i dati necessari alla verifica. Nella Figura 4 vediamo la scheda "Dati di input" per il rinforzo FRCM.

Illustriamo qui di seguito i dati seguendo l'ordine proposto nella scheda.

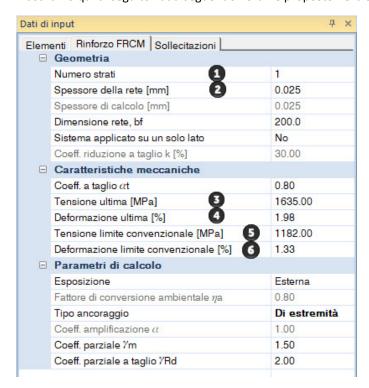


Figura 4 - Parametri del sistema FRCM nell'applicativo Verifiche Rinforzi

Parametri di calcolo

Iniziamo con l'illustrazione dei "Parametri di calcolo", che sono definiti nel CNR-DT215 e sono di carattere generale.

ESPOSIZIONE

Può essere "interna", "esterna" o "ambiente aggressivo", essa definisce il coefficiente di esposizione η_a.

TIPO ANCORAGGIO

Può essere "intermedio", "meccanico" o "di estremità", con esso si definiscono i valori di riferimento per la resistenza di calcolo del sistema (tensione e deformazione)

COEFFICIENTE PARZIALE

ym coefficiente parziale del materiale pari a 1,5 per gli SLU.

COEFFICIENTE PARZIALE A TAGLIO

γRd pari a 2.

Geometria e Caratteristiche meccaniche dei sistemi FASSABORTOLO

I sistemi FRCM di FASSABORTOLO sono:

- FASSANET ZR SYSTEM (sistema con rete bidirezionale)
- FASSANET ZR NHL SYSTEM (sistema con rete bidirezionale)
- FASSATEX STEEL NHL SYSTEM (sistema con tessuto unidirezionale)

Tabella riepilogativa di sintesi dei sistemi:

		FASSANET ZR SYSTEM		FASSANET ZR NHL SYSTEM		FASSATEX STEEL NHL SYSTEM				
Numero di strati di tessuto	1	Sistema ad uno strato		Sistema ad uno strato		Sistema ad uno strato				
Spessore della rete [mm]	2	0,0288 mm (trama e ordito)		0,053 mm (trama e ordito)		0,083 mm (ordito)				
Supporto		laterizio	tufo	pietrame	laterizio	tufo	pietrame	laterizio	tufo	pietrame
Tensione ultima [MPa]	3		1105			990			1681	
Deformazione ultima [%]	4		1,69			1,43			1,19	
Tensione limite convenzionale [MPa]	5	875	809	765	909	924	888	1658	1672	1729
Def. limite convenzionale [%]	6	1,34	1,24	1,17	1,10	1,12	1,08	0,76	0,76	0,76

Geometria

La Geometria del tessuto è definita dai seguenti dati.

È il numero di "reti" posate entro la matrice. Attenzione, dovendo prevedere la posa di più strati sarà assolutamente necessario prendere visione sia delle indicazioni illustrate nel capitolo dei Dettagli Costruttivi del CNR, sia dalle specifiche voci riportate nel CVT. Ad esempio, i sistemi Fassa Bortolo sono certificati per l'applicazione con singolo strato di rete (si vedano Figura 5, Figura 6 e Figura 7).

Non si tratta dello spessore finito del sistema FRCM, ma di uno spessore equivalente che caratterizza il composito FRCM. Questo parametro è fornito dal produttore ed è indicato nel CVT. È possibile leggere il dato nella sezione del CVT che illustra le *Caratteristiche del rinforzo interno* (Figura 5, Figura 6 e Figura 7).

DIMENSIONE RETE

La posa del sistema potrebbe non ricoprire l'intera larghezza del maschio murario, si prevede quindi la definizione della larghezza del tessuto assumendo che la posa sia sempre baricentrica.

APPLICAZIONE SU UN SOLO LATO

Nel CNR-DT 215 è prevista la possibilità di applicare il sistema su un solo lato del maschio murario, in tal caso l'incremento è per la sola resistenza a taglio, in questo caso, infatti, non ci sarà alcun beneficio di resistenza a pressoflessione. È possibile però valutare anche l'incremento a pressoflessione con lo specifico applicativo FassaStruttura sviluppato da Fassa Bortolo.

Per i sistemi Fassa Bortolo riportiamo le sezioni del CVT da cui si leggono i parametri 1 e 2.

3.2 Caratteristiche del rinforzo interno

Proprietà	Unità di misura	Valore	Metodo di prova Normativa di riferimento
Nome commerciale rinforzo		FASSANET ZR 185	
Tipo di rete		Rete bidirezionale bilanci	ata in fibra di vetro
Grammatura della rete in ordito	g/m ²	73,5	ISO 11667:1997
Grammatura della rete in trama	g/m ²	73,5	ISO 11667:1997
Spessore equivalente della rete di rinforzo in trama	mm	0,0288	LG qualificazione FRCM
Spessore equivalente della rete di rinforzo in ordito	mm	0,0288	LG qualificazione FRCM
Densità del materiale costituente la rete di rinforzo	g/cm ³	2,66	-
Numero massimo di reti sovrapponibili	-	Il sistema è qualificato per	r l'impiego ad uno strato
Resistenza a trazione media	MPa	1.181	LG qualificazione FRCM
Resistenza a trazione caratteristica	MPa	1.105	LG qualificazione FRCM
Modulo elastico medio	GPa	65,41	LG qualificazione FRCM
Deformazione ultima media	%	1,69	LG qualificazione FRCM

Figura 5 – Estratto dal CVT del sistema FASSANET ZR SYSTEM

7.2 Caratteristiche del rinforzo interno

Proprietà	Unità di misura	Valore	Metodo di prova Normativa di riferimento		
Nome commerciale rinforzo		FASSANET ZR 350			
Tipo di rete		Rete d'armatura bidirezionale bilanciata in fibra di vetro alcali-resistente per la realizzazione di sistemi FRCM			
Grammatura della rete in ordito	g/m2	137,8	ISO 11667:1997		
Grammatura della rete in trama	g/m2	137,8	ISO 11667:1997		
Spessore equivalente della rete di rinforzo in trama	mm	0,053	LG qualificazione FRCM		
Spessore equivalente della rete di rinforzo in ordito	mm	0,053	LG qualificazione FRCM		
Densità del materiale costituente la rete di rinforzo	g/cm3	2,6			
Numero massimo di reti sovrapponibili	-	Il sistema è qualificato	per l'impiego ad uno strato		
Resistenza a trazione media	MPa	1076	LG qualificazione FRCM		
Resistenza a trazione caratteristica	MPa	1020	LG qualificazione FRCM		
Modulo elastico medio	GPa	82,347	LG qualificazione FRCM		
Deformazione ultima media	%	1,3	LG qualificazione FRCM		

Figura 6 – Estratto dal CVT del sistema FASSANET ZR NHL SYSTEM

5.2 Caratteristiche del rinforzo interno

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale rinforzo		FASSATEX STEEL 650	
Tipo di rete		Tessuto in acciaio inox	
Grammatura del tessuto	g/m ²	652	ISO 11667:1997
Spessore equivalente del tessuto	mm	0,083	LG qualificazione FRCM
Densità del materiale costituente	g/cm ³	7,85	=
il tessuto di rinforzo			
Numero massimo di reti	-	Il sistema è qualificato per	l'impiego ad uno strato
sovrapponibili			
Resistenza a trazione media	MPa	1.449	LG qualificazione FRCM
Resistenza a trazione	MPa	1.409	LG qualificazione FRCM
caratteristica			
Modulo elastico medio	GPa	184,88	LG qualificazione FRCM
Deformazione ultima media	%	0,76	LG qualificazione FRCM

Figura 7 – Estratto dal CVT del sistema FASSATEX STEEL NHL SYSTEM

Caratteristiche meccaniche

Sono dati che caratterizzano il sistema composito e che vengono forniti da FASSABORTOLO sulla base del CVT.

COEFFICIENTE A TAGLIO

È un coefficiente che tiene conto della ridotta resistenza estensionale delle fibre quando sollecitate a taglio, tipicamente posto pari a 0,8 (CNR-DT 215)

- 3 TENSIONE ULTIMA
- 4 DEFORMAZIONE ULTIMA
- TENSIONE LIMITE CONVENZIONALE
- 6 DEFORMAZIONE LIMITE CONVENZIONALE

Questi parametri sono reperibili nella sezione del CVT che illustra le *Caratteristiche del sistema composito* a seconda del supporto su cui è applicato. Per i sistemi Fassa Bortolo riportiamo le sezioni del CVT da cui si leggono i parametri 3, 4, 5 e 6.

Sistema FASSANET ZR SYSTEM

3.5.1 Caratteristiche del sistema su supporto in laterizio

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale sistema		FASSANET ZR	
composito			
Tipo di supporto		laterizio	
Spessore nominale del sistema	mm	10	-
Intervallo temperature di	°C	-40 / +85	-
esercizio			
Tensione limite convenzionale	MPa	875	LG qualificazione FRCM
caratteristica		5	
Deformazione limite	%	1,34	LG qualificazione FRCM
convenzionale		6	
Modulo elastico medio del	GPa	2.592,78	LG qualificazione FRCM
composito nello stadio A			
Tensione ultima caratteristica	MPa	1.105	LG qualificazione FRCM
Deformazione ultima media	%	1,69	LG qualificazione FRCM
I unahazza minima di ancoraggio	mm	200	I G qualificazione CPM

Figura 8 – Estratto dal CVT del sistema FASSANET ZR SYSTEM su supporto in laterizio

3.5.2 Caratteristiche del sistema su supporto in tufo

Proprietà	Unità di misura	Valore	Metodo di prova Normativa di riferimento
Nome commerciale sistema composito		FASSANET ZR	
Tipo di supporto		tufo	
Spessore nominale del sistema	mm	10	-
Intervallo temperature di	°C	-40 / +85	-
esercizio			
Tensione limite convenzionale	MPa	809	LG qualificazione FRCM
caratteristica		9	
Deformazione limite	%	1,24	LG qualificazione FRCM
convenzionale			
Modulo elastico medio del	GPa	2.592,78	LG qualificazione FRCM
composito nello stadio A			
Tensione ultima caratteristica	MPa	1.105	LG qualificazione FRCM

LG qualificazione FRCM

analificaciona CDM

Figura 9 – Estratto dal CVT del sistema FASSANET ZR SYSTEM su supporto in tufo

1,69

3.5.3 Caratteristiche del sistema su supporto in pietrame

%

Deformazione ultima media

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale sistema		FASSANET ZR	
composito			
Tipo di supporto		pietrame	
Spessore nominale del sistema	mm	10	-
Intervallo temperature di	°C	-40 / +85	-
esercizio			
Tensione limite convenzionale	MPa	765	LG qualificazione FRCM
caratteristica		•	
Deformazione limite	%	1,17	LG qualificazione FRCM
convenzionale		•	
Modulo elastico medio del	GPa	2.592,78	LG qualificazione FRCM
composito nello stadio A			
Tensione ultima caratteristica	MPa	1.105	LG qualificazione FRCM
Deformazione ultima media	%	1,69	LG qualificazione FRCM
I unahezza minima di ancoraggio	mm	200	I G qualificazione CRM

Figura 10 – Estratto dal CVT del sistema FASSANET ZR SYSTEM su supporto in pietrame

Sistema FASSANET ZR NHL SYSTEM

7.5.1 Caratteristiche del sistema su supporto in laterizio

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale sistema composito		FASSANET ZR NHL SV	<u>'stem</u>
Tipo di supporto		laterizio	
Spessore nominale del sistema	mm	12	LG qualificazione FRCM
Intervallo temperature di esercizio	°C	-40/+85	LG qualificazione FRCM
Tensione limite convenzionale	MPa	909	LG qualificazione FRCM

Tensione limite convenzionale	MPa	909	LG qualificazione FRCM
caratteristica		•	
Deformazione limite	%	1,104	LG qualificazione FRCM
convenzionale			
Modulo elastico medio del	GPa	2.290,178	LG qualificazione FRCM
composito nello stadio A			
Tensione ultima caratteristica	MPa	990 3	LG qualificazione FRCM
Deformazione ultima media	%	1,43	LG qualificazione FRCM
I unahezza minima di ancoraggio	mm	200	I G qualificazione CRM

Figura 11 – Estratto dal CVT del sistema FASSANET ZR NHL SYSTEM su supporto in laterizio

7.5.2 Caratteristiche del sistema su supporto in tufo

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale sistema		FASSANET ZR NHL Sys	<u>stem</u>
composito			
Tipo di supporto		tufo	
Spessore nominale del sistema	mm	12	LG qualificazione FRCM
Intervallo temperature di	°C	-40/+85	LG qualificazione FRCM
esercizio			
Tensione limite convenzionale	MPa	924	LG qualificazione FRCM
caratteristica		5	
Deformazione limite	%	1,122	LG qualificazione FRCM
convenzionale		6	
Modulo elastico medio del	GPa	2.290,178	LG qualificazione FRCM
composito nello stadio A		_	
Tensione ultima caratteristica	MPa	990	LG qualificazione FRCM
Deformazione ultima media	%	1,43	LG qualificazione FRCM
Lunchazza minima di anagraggia	*****	200	I C qualificaziona CDM

Figura 12 – Estratto dal CVT del sistema FASSANET ZR NHL SYSTEM su supporto in tufo

7.5.3 Caratteristiche del sistema su supporto in pietrame

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale sistema		FASSANET ZR NHL Sv	stem_
composito			
Tipo di supporto		pietrame	
Spessore nominale del sistema	mm	12	LG qualificazione FRCM
Intervallo temperature di	°C	-40/+85	LG qualificazione FRCM
esercizio			
Tensione limite convenzionale	MPa	888	LG qualificazione FRCM
caratteristica		5	
Deformazione limite	%	1,078	LG qualificazione FRCM
convenzionale		6	
Modulo elastico medio del	GPa	2.290,178	LG qualificazione FRCM
composito nello stadio A			
Tensione ultima caratteristica	MPa	990 3	LG qualificazione FRCM
Deformazione ultima media	%	1,43	LG qualificazione FRCM
Lunghezza minima di ancoraggio	mm	200	I G qualificazione CRM

Figura 13 – Estratto dal CVT del sistema FASSANET ZR NHL SYSTEM su supporto in pietrame

Sistema FASSATEX STEEL NHL SYSTEM

5.5.1 Caratteristiche del sistema su supporto in laterizio

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale sistema		FASSATEX STEEL NHI	_
composito			
Tipo di supporto		laterizio	
Spessore nominale del sistema	mm	10	-
Intervallo temperature di	°C	-40 / +85	-
esercizio			
Tensione limite convenzionale	MPa	1.658	LG qualificazione FRCM
caratteristica			
Deformazione limite	%	0,76	LG qualificazione FRCM
convenzionale		•	
Modulo elastico medio del	GPa	1.097,15	LG qualificazione FRCM
composito nello stadio A			
Tensione ultima caratteristica	MPa	1.681	LG qualificazione FRCM
Deformazione ultima media	%	1,19	LG qualificazione FRCM

Figura 14 – Estratto dal CVT del sistema FASSATEX STEEL NHL SYSTEM su supporto in laterizio

5.5.2 Caratteristiche del sistema su supporto in tufo

Proprietà	Unità di	Valore	Metodo di prova
	misura		Normativa di riferimento
Nome commerciale sistema		FASSATEX STEEL NHI	
composito			
Tipo di supporto		tufo	
Spessore nominale del sistema	mm	10	-
Intervallo temperature di	°C	-40 / +85	-
esercizio			
Tensione limite convenzionale	MPa	1.672	LG qualificazione FRCM
caratteristica		5	
Deformazione limite	%	0,76	LG qualificazione FRCM
convenzionale		6	
Modulo elastico medio del	GPa	1.097,15	LG qualificazione FRCM
composito nello stadio A		_	
Tensione ultima caratteristica	MPa	1.681	LG qualificazione FRCM
Deformazione ultima media	%	1,19	LG qualificazione FRCM
I unohezza minima di ancoraccio	mm	200	LG qualificazione CRM

Figura 15 – Estratto dal CVT del sistema FASSATEX STEEL NHL SYSTEM su supporto in tufo

5.5.3 Caratteristiche del sistema su supporto in pietrame

Proprietà	Unità di	Valore	Metodo di prova
-	misura		Normativa di riferimento
Nome commerciale sistema		FASSATEX STEEL NH	<u>L</u>
composito			
Tipo di supporto		pietrame	
Spessore nominale del sistema	mm	10	=
Intervallo temperature di	°C	-40 / +85	-
esercizio			
Tensione limite convenzionale	MPa	1.729	LG qualificazione FRCM
caratteristica		9	
Deformazione limite	%	0,76	LG qualificazione FRCM
convenzionale		•	
	*		•
Modulo elastico medio del	GPa	1.097,15	LG qualificazione FRCM
composito nello stadio A		_	
Tensione ultima caratteristica	MPa	1.681	LG qualificazione FRCM
Deformazione ultima media	%	1,19 4	LG qualificazione FRCM
Lunghezza minima di ancoraggio	mm	150	LG qualificazione CRM

Figura 16 – Estratto dal CVT del sistema FASSATEX STEEL NHL SYSTEM su supporto in pietrame

MARZO 2025

Responsabile della sola fornitura dei parametri di calcolo dei propri sistemi FRCM, non della procedura software.