

RAPPORTO DI PROVA N. 390854

Cliente

FASSA S.r.l.

Via Lazzaris, 3 - 31027 SPRESIANO (TV) - Italia

Oggetto*

parete divisoria denominata "MODUS SY 50/68 LV"

Attività

misurazione in laboratorio dell'isolamento acustico per via aerea secondo la norma UNI EN ISO 10140-2:2021

Risultati

R (C. C)	Configurazione "A" Parete X-Lam	32 (-1,-3) dB
	Configurazione "B" Parete X-Lam + controparete	52 (-4, -11) dB

(*) secondo le dichiarazioni del cliente.

Bellaria-Igea Marina - Italia, 20 gennaio 2022

L'Amministratore Delegato

Commessa:

90700

Provenienza dell'oggetto:

Identificazione dell'oggetto in accettazione:

2021/3223 del 17 dicembre 2021

2021/3238 del 20 dicembre 2021

Data dell'attività:

14 gennaio 2022

Luogo dell'attività:

Istituto Giordano S.p.A. - Strada Erbosa Uno, 78 -

47043 Gatteo (FC) - Italia

 Indice
 Pagina

 Descrizione dell'oggetto*
 2

 Riferimenti normativi
 4

 Apparecchiature
 5

 Modalità
 5

 Incertezza di misura
 6

 Condizioni ambientali
 7

 Risultati
 7

Il presente documento è composto da n. 10 pagine e non può essere riprodotto parzialmente, estrapolando parti di interesse a discrezione del cliente, con il rischio di favorire una interpretazione non corretta dei risultati, fatto salvo quanto definito a livello contrattuale.

I risultati si riferiscono solo all'oggetto in esame, così come ricevuto, e sono validi solo nelle condizioni in cui l'attività è stata effettuata.

L'originale del presente documento è costituito da un documento informatico firmato digitalmente ai sensi della Legislazione Italiana applicabile.

Responsabile Tecnico di Prova:

Dott. Andrea Muccioli

Responsabile del Laboratorio di Acustica e

Vibrazioni:

Dott. Andrea Cucchi

Compilatore: Agostino Vasini **Revisore:** Dott. Andrea Muccioli

Pagina 1 di 10

Descrizione dell'oggetto*

L'oggetto in esame è costituito da una parete divisoria, sottoposta a prova in due differenti configurazioni ed avente le caratteristiche fisiche riportate nella seguente tabella:

Larghezza rilevata	3600 mm
Altezza rilevata	3000 mm
Spessore nominale totale	148 mm
Spessore nominale controparete	68 mm
Superficie acustica utile (3600 mm × 3000 mm)	10,80 m²
Massa unitaria (determinazione analitica)	47,1 kg/m²

L'oggetto, in particolare, è composto dalle seguenti configurazioni:

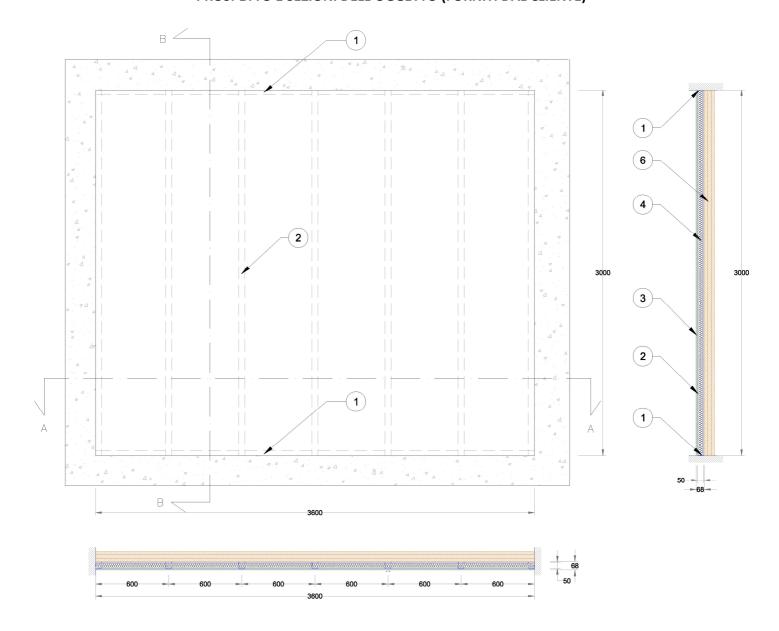
Configurazione "A"

L'oggetto in configurazione "A" è costituito da una parete divisoria, formata da pannelli in legno lamellare incrociato (X-Lam), spessore nominale 80 mm, densità nominale 380 kg/m³ e dimensioni nominali 3600 mm × 3000 mm (I × h), prodotta da X-LAM DOLOMITI.

Configurazione "B"

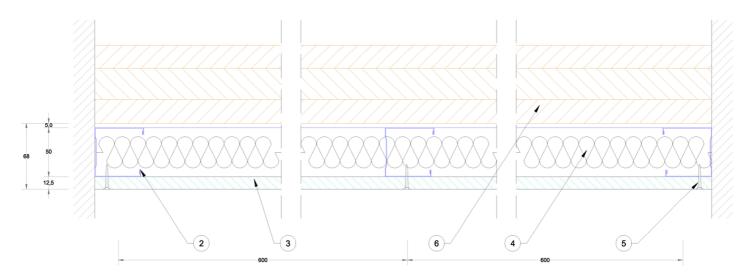
L'oggetto in configurazione "B" prevede, oltre alla parete indicata in configurazione "A", la realizzazione di una controparete denominata "MODUS SY 50/68 LV" sul lato ricevente, costituita da:

- intercapedine d'aria, spessore nominale 5 mm;
- struttura metallica costituita da:
 - orditura metallica orizzontale realizzata con guide d'acciaio profilato a forma di U, dimensioni nominali 40 mm
 × 50 mm × 40 mm e spessore nominale 0,6 mm (conformi alla UNI EN 14195), poste a soffitto e a pavimento;
 - orditura metallica verticale realizzata con montanti d'acciaio profilato a forma di C, dimensioni nominali
 50 mm × 49 mm × 47 mm e spessore nominale 0,6 mm (conformi alla UNI EN 14195), posti ad interasse di
 600 mm, inseriti alle estremità nelle guide orizzontali sopra descritte;
 - isolamento interno costituito da pannelli di lana di vetro denominata "GypsoGLASS 039" (conforme alla EN 13162), spessore nominale 45 mm e densità nominale 12 kg/m³, posizionati nell'intercapedine dell'orditura verticale;
 - nastro monoadesivo di polietilene espanso a cellule chiuse, spessore nominale 3,0 mm, posto sul perimetro dell'orditura (le guide a U e i due montanti alle estremità);
- rivestimento della controparete realizzato con n. 1 strato di lastre di cartongesso (tipo DI secondo EN 520 e in classe di reazione al fuoco A2,s1-d0) denominate "Gypsotech GypsoARYA HD BA 13", spessore nominale 12,5 mm, composte da un nucleo interno di gesso, fibra di vetro, additivi specifici e minerali, e da un rivestimento esterno di carta; tali lastre sono posate coi giunti sfalsati e fissate alla struttura metallica sopradescritta mediante viti fosfatate autoperforanti, diametro nominale 3,5 mm;
- sigillatura dei giunti fra le lastre mediante nastro di rinforzo di carta microforata e stucco di gesso "FASSAJOINT" (conforme alla UNI EN 13963);
- sigillatura delle teste delle viti realizzata mediante stucco di gesso "FASSAJOINT" (conforme alla UNI EN 13963);
- sigillatura dei bordi perimetrali realizzata con mastice acrilico.
- (*) secondo le dichiarazioni del cliente, ad eccezione delle caratteristiche espressamente indicate come rilevate; Istituto Giordano declina ogni responsabilità sulle informazioni e sui dati forniti dal cliente che possono influenzare i risultati.



L'oggetto è prodotto dal cliente ed è stato montato nell'apertura di prova a cura del cliente stesso.

PROSPETTO E SEZIONI DELL'OGGETTO (FORNITI DAL CLIENTE)



PARTICOLARE DELLA SEZIONE A-A (FORNITO DAL CLIENTE)

LEGENDA

Simbolo	Descrizione
1	Guida metallica a U dimensioni 40 mm × 50 mm × 40 mm, spessore 0,6 mm
2	Montanti in acciaio a C dimensioni 50 mm × 49 mm × 47 mm, spessore 0,6 mm, interasse 600 mm
3	Lastre in cartongesso "Gypsotech GypsoARYA HD BA 13" (tipo DI), spessore 12,5 mm
4	Pannello isolante lana di vetro "GypsoGLASS 039", spessore 45 mm, densità 12 kg/m³
5	Viti fosfatate autoperforanti, diametro 3,5 mm
6	Parete in X-Lam, spessore 80 mm

Riferimenti normativi

Norma	Titolo		
UNI EN ISO 10140-2:2021	Acustica - Misurazione in laboratorio dell'isolamento acustico di edifici e di elementi di edificio - Parte 2: Misurazione dell'isolamento acustico per via aerea		
UNI EN ISO 717-1:2021	Acustica - Valutazione dell'isolamento acustico in edifici e di elementi di edificio - Parte 1: Isolamento acustico per via aerea		

Apparecchiature

Descrizione

Amplificatore di potenza 2000 W modello "EP2000" della ditta Behringer

Equalizzatore digitale a terzi d'ottava modello "DEQ2496" della ditta Behringer

Diffusore acustico dodecaedrico mobile con percorso rettilineo, lunghezza 1,6 m e inclinazione 15°, posizionato nella camera emittente

Diffusore acustico dodecaedrico fisso posizionato nella camera ricevente

N. 2 aste microfoniche rotanti con percorso circolare, raggio 1 m e inclinazione 30°

N. 2 microfoni ø ½", con preamplificatore, modello "46AR" della ditta G.R.A.S.

Analizzatore a n. 4 canali in tempo reale modello "Soundbook" della ditta Sinus Messtechnik

Calibratore per la calibrazione dei microfoni modello "CAL200" della ditta Larson Davis

N. 2 termoigrometri modello "HD206-1" della ditta Delta Ohm

Barometro modello "UZ001" della ditta Brüel & Kjær

Bilancia a piattaforma elettronica modello "VB 150 K 50LM" della ditta Kern

Fettuccia metrica modello "Tri-Matic 5m/19mm" della ditta Sola

Misuratore di distanza laser modello "DLE 50 Professional" della ditta Bosch

Modalità

La prova è stata eseguita utilizzando la procedura interna di dettaglio PP017 nella revisione vigente alla data della prova. L'ambiente di prova è costituito da:

- "camera emittente", contente la sorgente di rumore e con volume "Vs";
- "camera ricevente", caratterizzata mediante l'area di assorbimento acustico equivalente e con volume "V".

L'oggetto, dopo essere stato condizionato per almeno 24 h all'interno degli ambienti di misura, è stato installato nell'apertura di prova posta tra le due camere secondo le modalità riportate nel disegno seguente:

Camera emittente

Particolare del posizionamento dell'oggetto nell'apertura fra le due camere dell'ambiente di prova

Nell'intervallo di bande di ⅓ d'ottava compreso tra 100 Hz e 5000 Hz, il potere fonoisolante "R" è stato calcolato utilizzando la formula seguente:

$$R = L_1 - L_2 + 10 \log \frac{S}{A}$$

dove: L₁ = livello medio di pressione sonora nella camera emittente, in dB, generato con rumore rosa;

L₂ = livello medio di pressione sonora nella camera ricevente, in dB, corretto del rumore di fondo e calcolato utilizzando la formula seguente:

$$L_2 = 10 \log[10^{\frac{L_{2b}}{10}} - 10^{\frac{L_b}{10}}]$$

dove: L_{2b} = livello medio di pressione sonora combinato del segnale e del rumore di fondo, in dB;

L_b = livello medio del rumore di fondo, in dB;

se la differenza dei livelli $[L_{2b} - L_b]$ è inferiore a 6 dB, viene applicata una correzione massima pari a 1,3 dB e il corrispondente valore di "R" è da considerarsi come un valore limite della misurazione;

S = superficie utile di misura dell'oggetto in prova, in m²;

A = area di assorbimento acustico equivalente della camera ricevente, in m², calcolata utilizzando la formula seguente:

$$A = \frac{0.16 \cdot V}{T}$$

dove: V = volume della camera ricevente, in m³;

T = tempo di riverberazione, in s.

In accordo con la procedura riportata nella norma UNI EN ISO 717-1 sono stati calcolati:

- indice di valutazione " R_w " del potere fonoisolante "R", in dB, pari al valore della curva di riferimento a 500 Hz;
- termine correttivo "C" da sommare a "R_w" con spettro in sorgente relativo a rumore rosa ponderato A;
- termine correttivo " C_{tr} " da sommare a " R_{w} " con spettro in sorgente relativo a rumore da traffico ponderato A. La prova è stata eseguita subito dopo l'allestimento dell'oggetto.

Incertezza di misura

L'incertezza di misura è stata determinata in accordo con la guida JCGM 100:2008 "Evaluation of measurement data - Guide to the expression of uncertainty in measurement", individuando per ciascuna frequenza il numero di gradi di libertà effettivi "v_{eff}" e l'incertezza estesa "U" del valore del potere fonoisolante "R", stimata con fattore di copertura "k" relativo a un livello di fiducia pari al 95 %. L'incertezza di misura dell'indice di valutazione "U(R_w)" è stimata con fattore di copertura k = 2 relativo a un livello di fiducia pari al 95 % utilizzando la procedura di calcolo riportata nell'allegato B della norma UNI EN ISO 12999-1:2021 "Acustica - Determinazione e applicazione dell'incertezza di misurazione nell'acustica in edilizia - Parte 1: Isolamento acustico".

Condizioni ambientali

	Camera emittente	Camera ricevente
Pressione atmosferica "p"	(103000 ± 50) Pa	(103000 ± 50) Pa
Temperatura media "t"	(10 ± 1) °C	(10 ± 1) °C
Umidità relativa media "RH"	(44 ± 5) %	(40 ± 5) %

<u>Risultati</u>

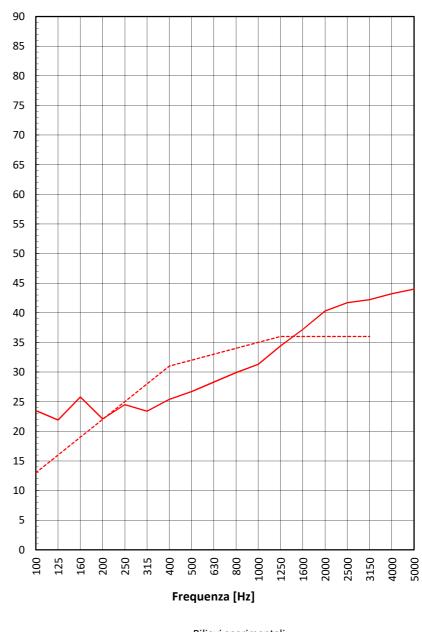
CONFIGURAZIONE "A"

Frequenza	R	$R_{\rm rif}$	V _{eff}	k	U
[Hz]	[dB]	[dB]			[dB]
100	23,5	13,0	5	2,57	2,7
125	21,9	16,0	6	2,45	2,0
160	25,8	19,0	10	2,23	1,1
200	22,1	22,0	9	2,26	0,9
250	24,5	25,0	12	2,00	0,8
315	23,4	28,0	9	2,26	0,8
400	25,4	31,0	21	2,00	0,5
500	26,7	32,0	18	2,00	0,5
630	28,3	33,0	15	2,00	0,5
800	29,9	34,0	16	2,00	0,5
1000	31,3	35,0	19	2,00	0,4
1250	34,4	36,0	16	2,00	0,4
1600	37,2	36,0	15	2,00	0,4
2000	40,3	36,0	19	2,00	0,4
2500	41,7	36,0	16	2,00	0,4
3150	42,2	36,0	18	2,00	0,4
4000	43,2	//	18	2,00	0,4
5000	44,0	//	22	2,00	0,4

Superficie utile di misura dell'oggetto: 10,80 m²

Volume delle camere di prova:

 $V_S = 98,6 \text{ m}^3$ $V = 90,7 \text{ m}^3$


Indice di valutazione del potere fonoisolante e termini di correzione:

$$R_w$$
 (C, C_{tr}) = 32 (-1, -3) dB*

(*) indice di valutazione del potere fonoisolante "R_w" elaborato procedendo a passi di 0,1 dB e sua incertezza di misura "U(R_w)":

$$R_w$$
 = (32,2 ± 0,5) dB
 R_w + C = (31,2 ± 0,5) dB
 R_w + C_{tr} = (28,8 ± 0,6) dB

Potere fonoisolante "R" [dB]

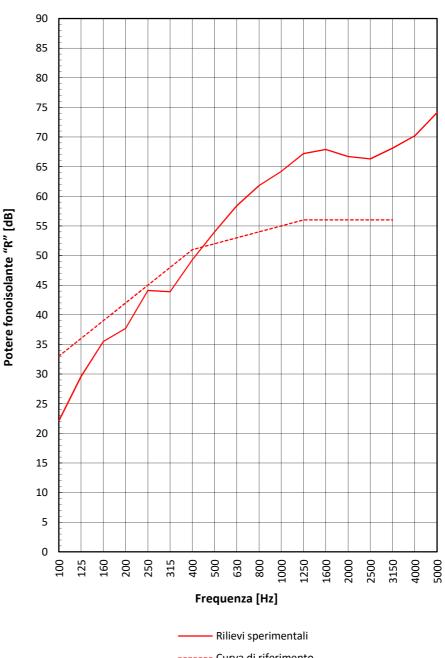
----- Rilievi sperimentali
----- Curva di riferimento

CONFIGURAZIONE "B"

Frequenza	R	R_{rif}	V _{eff}	k	U
[Hz]	[dB]	[dB]			[dB]
100	22,1	33,0	6	2,45	2,6
125	29,6	36,0	6	2,45	2,0
160	35,5	39,0	9	2,26	1,1
200	37,7	42,0	13	2,00	0,8
250	44,1	45,0	8	2,31	0,8
315	43,9	48,0	13	2,00	0,7
400	49,3	51,0	17	2,00	0,5
500	54,0	52,0	17	2,00	0,5
630	58,4	53,0	17	2,00	0,5
800	61,8	54,0	16	2,00	0,5
1000	64,2	55,0	16	2,00	0,4
1250	67,2	56,0	18	2,00	0,5
1600	67,9	56,0	25	2,00	0,4
2000	66,7	56,0	16	2,00	0,4
2500	66,3	56,0	16	2,00	0,4
3150	68,1	56,0	16	2,00	0,5
4000	70,2	//	6	2,45	1,5
5000	74,1	//	5	2,57	2,3

Superficie utile di misura dell'oggetto: 10,80 m²

Volume delle camere di prova:


$$V_S = 98,6 \text{ m}^3$$

 $V = 90,7 \text{ m}^3$

Indice di valutazione del potere fonoisolante e termini di correzione:

$$R_w$$
 (C, C_{tr}) = 52 (-4, -11) dB*

(*) indice di valutazione del potere fonoisolante "R_w" elaborato procedendo a passi di 0,1 dB e sua incertezza di misura "U(R_w)":

$$R_w = (52,0 \pm 1,0) \text{ dB}$$

 $R_w + C = (48,1 \pm 1,6) \text{ dB}$
 $R_w + C_{tr} = (40,7 \pm 1,8) \text{ dB}$

----- Curva di riferimento

Il Responsabile Tecnico di Prova (Dott. Andrea Muccioli)

Il Responsabile del Laboratorio di Acustica e Vibrazioni (Dott. Andrea Cucchi)